Order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>5</mml:mn></mml:math> Brauer–Manin obstructions to the integral Hasse principle on log K3 surfaces
نویسندگان
چکیده
We construct families of log K3 surfaces and study the arithmetic their members. use this to produce explicit with an order 5 Brauer–Manin obstruction integral Hasse principle.
منابع مشابه
Transcendental Obstructions to Weak Approximation on General K3 Surfaces
We construct an explicit K3 surface over the field of rational numbers that has geometric Picard rank one, and for which there is a transcendental Brauer-Manin obstruction to weak approximation. To do so, we exploit the relationship between polarized K3 surfaces endowed with particular kinds of Brauer classes and cubic fourfolds.
متن کاملCertain K3 Surfaces Parametrized by the Fibonacci Sequence Violate the Hasse Principle
For a prime p ≡ 5 (mod 8) satisfying certain conditions, we show that there exist an infinitude of K3 surfaces parameterized by certain solutions to Pell’s equation X2 − pY 2 = 4 in the projective 5-space that are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction. Further, these surfaces contain no zero-cycle of odd degree over Q. As an illustration for the main r...
متن کاملMore cubic surfaces violating the Hasse principle
We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
متن کاملCounterexamples to the Hasse Principle
This article explains the Hasse principle and gives a self-contained development of certain counterexamples to this principle. The counterexamples considered are similar to the earliest counterexample discovered by Lind and Reichardt. This type of counterexample is important in the theory of elliptic curves: today they are interpreted as nontrivial elements in Tate– Shafarevich groups.
متن کاملCounterexamples to the Hasse principle
In both of these examples, we have proved that X(Q) = ∅ by showing that X(Qv) = ∅ for some place v. In the first case it was v = ∞, the real place. In the second case we showed that X(Q2) was empty: the argument applies equally well to a supposed solution over Q2. Given a variety X over a number field k and a place v of k, it is a finite procedure to decide whether X(kv) is empty. Moreover, X(k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Fourier
سال: 2023
ISSN: ['0373-0956', '1777-5310']
DOI: https://doi.org/10.5802/aif.3529